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Abstract--The propagation of spontaneous void fraction disturbances in a nitrogen-water flow has been 
studied through the statistical analysis of conductivity probe signals, for void fractions ranging from 0.1 
to 0.5 and including the bubble--siug transition. The power spectral density function and the standard 
deviation of the void fraction have been computed for each probe, as well as the system phase factor 
(related to the wave velocity), the coherence function and the system gain factor between each pair of 
consecutive probes as functions of frequency. For bubble flow, the results are compatible with the results 
obtained by other authors. The transition from bubble to slug flow is associated with void fraction wave 
instabilities. Two kinds of instabilities seem to occur simultaneously: amplitude increase (system gain 
factor > 1) and wave-breaking. 

1. INTRODUCTION 

Investigation of propagation phenomena can yield much interesting information on two-phase 
flows. Interest paid in the past to the so-called void fraction or concentration waves has been 
renewed recently. These waves are also called continuity or kinematic waves (Wallis 1969) because 
of the analogy of the simplest equation describing them with the equation of traffic flow waves on 
a highway analyzed by Lighthill & Whitham (1955). 

Void fraction waves were first detected and qualitatively described independently by Zuber 
(1961) and Wallis (1961). Nassos & Bankoff (1966) carried out a series of experiments on void 
fraction waves produced by external disturbances. They found that the measured wave velocities 
are in fair agreement with the continuity wave theory based upon the work of Lighthill & Whitham 
(1955). A turbulent diffusion process was taken into account to explain the observed decrease in 
the disturbances (Nassos & Bankoff 1966). For some runs an increase in the disturbance amplitude 
was observed, and the corresponding diffusion coefficient was negative. Recently, some other 
studies were carried out on the void fraction waves, mainly in the hope of obtaining some 
information on the closure law (topological law) for the kinematic model of two-phase flow (Bour~ 
& Mercadier 1981; Bour~ 1982). Although this aim is not discussed further here studies in this field 
give interesting insight into two-phase flow propagation phenomena themselves. 

Mercadier (1981) studied, both experimentally and theoretically, the propagation of small 
spontaneous disturbances (fluctuations) of the void fraction in vertical air-water flows for mean 
void fractions ranging from 0 to 0.28. His conclusions may be summarized as follows: 

--The frequencies of void fraction waves do not exceed a few Hz under his 
experimental conditions. 

--Void fraction waves are not dispersive, i.e. the phase velocity of the waves does 
not significantly depend on frequency for the observed frequency range. 

--The phase velocity of the void fraction waves is always bounded by the velocity 
of the liquid (lower limit) and by the mean velocity of the gas (upper limit). 

--The void fraction waves are damped for bubble flows and the damping decreases 
as the mean void fraction increases. 

tOn leave in 1983 from the Institute of Fluid Flow Machinery, Gdansk, Poland. 
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On the grounds of the last observation, Mercadier (1981) put forward the hypothesis that at some 
value of the mean voidfraction the damping could disappear and that the flow pattern transition 
(bubble to slug) could be related to the instability of void fraction waves. 

The propagation of larger disturbances of void fraction imposed by a special disturbance device 
was studied by Micaelli (1982) in vertical nitrogen-water co-current flow for mean void fractions 
ranging from 0 to 0.20. He concluded that at high liquid flow rates (Re > 6.104) the disturbances 
are strongly damped and the damping could be described by a diffusion law. Moreover, he 
confirmed that the void fraction waves are not significantly dispersive and that their phase velocity 
does not depend significantly on the longitudinal position z, at least for mean void fractions < 0.2. 

At this point a remark must be made: experimental investigations on void fraction waves are 
primarily boundary condition problems. (The experimenter has some control on the boundary 
conditions, such as the flow inlet conditions or at least he can easily measure the inlet disturbance 
frequency. On the contrary he has practically no control on the detailed structure of the initial 
conditions, often a so-called "steady" flow which obviously cannot be strictly steady.) Therefore, 
the experimental disturbance parameters are the frequency and amplitude of the disturbance, and 
not its wavelength. Accordingly, although the wavelength is definitively a more "fundamental" 
parameter, most results are expressed hereafter in terms of frequency (this point will be discussed 
again in section 7.6). 

On the basis of a microscopic model for bubble flow and an assumed form of the bubble pair 
distribution function, Biesheuvel (1983) derived a diffusion-like equation for the void fraction 
waves of small amplitudes. For negative values of the diffusion coefficient, the waves described by 
this' equation are unstable and the author assumes that this instability is related to a flow pattern 
transition. The analytical expression of the diffusion coefficient is rather complex and it is difficult 
to draw any physical conclusion concerning the conditions leading to a flow pattern transition. 

In view of our results discussed later, it is worth mentioning some interesting investigations 
concerning flow pattern transitions. Jones & Zuber (1975) studied experimentally the interrelation 
between void fraction fluctuations and flow patterns. They found that the probability density 
function of void fraction fluctuations has maxima at the following void fraction values: 

--one near zero for bubble flow; 
--one near zero and another near unity for slug or churn flow; 
---one near unity for annular flow. 

For slug flows, the power spectral density function has a sharp maximum. For a liquid superficial 
velocity JL = 0.15 m/s, the frequency at which the maximum power spectral density occurred was 
approximately contained within the range 0.8 < f < 1.6 Hz for all slug flow runs. According to 
Tutu (1982, 1984), the investigation of pressure fluctuations can also lead to flow pattern 
identification. The results of Tutu's work have shown that the probability density function of 
pressure drop exhibits one or two maxima for bubble or slug (churn) flow, respectively. 

Taitel et  al. (1980) constructed a model based on a physical mechanism to predict flow pattern 
transitions during steady gas-liquid co-current flow in vertical tubes. They found that at not too 
large liquid flow rates a steady bubble flow can exist only in tubes which have a diameter larger 
than some definite value. This value can be predicted by the model. For air-water flows at low 
pressure, e.g. 10 ~ N/m 2, and liquid superficial velocities < 1 m/s, a steady bubble flow could not exist 
in tubes < 5 cm dia. In such conditions only slug flow could exist. The authors also considered 
churn flow as an entrance phenomenon, i.e. the early stage of a stable slug flow which exists farther 
along the tube. Under some conditions the "entrance" region can cover the whole length of the 
tube. 

The main aim of the study presented here is to widen the scope of the works on void fraction 
waves for mean void fractions >0.28. 

The existence of void fraction waves is considered as being established in the literature cited 
above. It is also pointed out that the steady-state values of the void fraction for given liquid and 
gas flow rates (a problem abundantly dealt with in the literature) are not within the scope of this 
study, although they are given in section 3 for completeness. 

To the authors' knowledge, no work has been performed on the propagation of void fraction 
waves for mean void fractions > 0.28. Thus in the first place, it is necessary to detect them in that 



PROPAGATION OF VOID FRACTION DISTURBANCES 201 

range, and to measure their dispersion, velocity of propagation and attenuation (or amplification). 
For this purpose the measurements of the coherence function, standard deviation, power spectral 
density function, system phase and gain factors of the void fraction signals are carried out. 

Special emphasis is put on a possible interrelation between an instability of the void fraction 
waves and the bubble-slug flow pattern transition. 

2. EXPERIMENTAL CRITERIA OF WAVE INSTABILITY 

The growth of the wave amplitude along the pipe in the direction of its displacement suggests 
the instability of the wave but this cannot be confirmed experimentally in the strict sense (the 
growth of amplitude has to be continued indefinitely for the wave to be unstable). The pipe being 
of finite length, one cannot be quite sure whether the growth of amplitude is related to an instability 
of the wave or to a long-wave phenomenon. However, another type of instability is known in which 
the growth of amplitude is continued over a finite distance and during a finite time only. In this 
type the derivatives of the amplitude become infinite after a finite time, while the amplitude itself 
remains bounded. An instability of this kind is known as breaking (Whitham 1974). 

The simplest equation leading to void fraction waves is of the form (Wallis 1969) 

+ c ( ~ )  =0, [11 

where ,, is the void fraction and C is the velocity of void fraction waves. 
It is possible to demonstrate (Whitham 1974, p. 19) that if at a time t = 0 the spatial gradient 

of the wave velocity is negative then the breaking instability will occur. The point of instability 
may be found on a characteristic straight line, the slope of which is determined by the initial 
distribution of wave velocity. The breaking always appears after some delay and at some distance 
from the point where the gradient was negative at t = 0. 

The equations of two-phase flows in pipes are generally written as a set of first-order partial 
differential equations of the form (e.g. Bour6 1980) 

~uj ~uj 
A,j-~+%-~z+b~=O i,j=1,2 . . . . .  n, [2] 

where n = 3, 5, 7 depending on the utilized model (kinematic, mechanical, thermomechanical, 
respectively; in all cases, the set [2] includes balance equations and at least one closure equation). 
The set [2] implies wave phenomena. Depending on the utilized model there are 3, 5 or 7 kinds 
of waves, but in any case, each model implies at least void fraction waves (Bour6 1982). 

Although two-phase flow equations are more complicated than [1], it is assumed further that the 
conclusions on the instability of waves deduced from [1] are qualitatively valid in the more general 
case of the set [2]. This would be especially expected in the vicinity of the flow pattern transition 
where attenuation disappears (b~ = 0). In conclusion, the void fraction waves will be experimentally 
recognized as unstable if amplitude growth and negative wave velocity gradient are simultaneously 
observed in the pipe. 

3. EXPERIMENTS 

The OSCAR rig used for the present experiments is a classical low-pressure, nitrogen-water loop 
already used and described by Micaelli (1982). The test section (figure 1) is vertical 
(length = 1.75 m) and transparent (Plexiglas). Its 2 x 2 cm cross section is square to facilitate the 
implementation of 12 conductivity probes (flat walls). The mean void fraction and void fraction 
fluctuations are measured by processing the signals of these conductivity probes whose electrodes 
are also square (2 x 2 cm) and mounted flush in two opposite test section walls. The conductivity 
measured by a probe is thus roughly the conductivity of a cubic volume (2 x 2 x 2 crn) of the 
two-phase mixture. This volume being sufficiently large, the conductivity is practically unaffected 
by the behavior of individual bubbles. On the other hand, it is sufficiently small to lead to fairly 
local quantities (mean void fraction and void fraction fluctuations). The distance between two 
successive probes is 0.15 m from axis to axis. Twelve probes are installed along the test section 
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Figure 1. Test section. 
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(figure 1) but only the signals of eight probes (Nos 4-11) are processed in the present study. The 
test" section is also equipped with 10 pressure taps, which are used to calibrate the conductivity 
probes as void fraction meters (cf. section 5). 

The conductivity probes are supplied with a 10 kHz electrical current and the signal (voltage) 
is first processed to obtain its mean value and the fluctuations around this mean value. The mean 
conductivity leads directly to the average void fraction using the calibration curve (details will be 
given later). The fluctuating part is in turn processed with a computer to obtain: 

- - for  each probe: estimates of the power spectral density function and the standard 
deviation; 

--for each pair of  successive probes: estimates of  the system phase factor (which leads 
to the wave velocity), the system gain factor and the coherence function as 
functions of  the frequency. 

For the experiments reported here, water and nitrogen flowed co-currently upwards. The 
separator (a vessel in which the two phases separate and which is located approx. 0.5 m above the 
test section exit) worked at atmospheric pressure. The water flow rate was kept constant (superficial 
velocity 0.18 m/s). Such a small water flow rate was useful to control the water temperature (kept 
at 20°C). On the other hand, a large flow rate could prevent the occurrence of  slug flow within 
the test section. The nitrogen flow rate was adjusted to obtain an average void fraction varying 
from 0.1 to 0.5 to include the bubble-slug transition. The average void fraction value did not 
change significantly along the part of  the test section under study. The values of  mean void fraction 
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Table I 

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.47 0.50 

Jo(m/s) 0.04 0.06 0.09 0.13 0.16 0.21 0.27 0.31 0.39 0.42 
JL (m/s) 0.18 

Table 2 
i 2 ~- 0.35 3) 2 = 0.65 i 2 I= 0.95 

~r (~2) 21% 8.5% 1% 
~r (~) 17% 9% 2.8% 
'r (~)'~ 9"7° 5"2° 1'6° 

For details see Matuszkiewicz et aL (1984). 

as a function of gas and liquid superficial velocities corresponding to the flow conditions tested 
in the present study are given in table 1. 

The investigated void fraction fluctuations were those occurring spontaneously in the test section 
[as in the work by Mercadier (1981), but unlike the investigation of  Micaelfi (1982)]. They may 
result in part from the loop, and especially from the injector dynamics, but also probablymsee 
section 7.2--from interactions between bubbles, between bubbles and walls and from turbulence. 

More details may be found in former publications: on the rig, in Micaelli (1982); and on this 
particular series of  experiments and on their processing (finite Fourier transform) in Matuszkiewicz 
e t  al.  (1984). 

4. STATISTICAL DATA ANALYSIS 

Probe signals were processed in order to obtain the power spectral density function, cross- 
spectral density function, coherence function, system gain and phase factors and standard 
deviation. These quantities were used in the sense defined by Bendat & Piersol (1971) (see the 
appendix). To obtain the spectral quantities, the signals were converted from an analog to a digital 
form and further processed by the fast Fourier transform. 

Three requirements were imposed on data acquisition and processing. Statistical errors in 
spectral quantities have to be as low as possible, and at the same time, as void fraction wave 
frequencies do not exceed a few Hz, the resolution bandwidth has to be small enough. These are 
antagonistic requirements and could only be fulfilled if the duration of each single run was 
sufficiently long. This duration is however, limited by the requirement to maintain constant flow 
parameters during the run. The choice of the sample record length and of the number of sample 
records used for statistical averaging was the result of a compromise between these three 
requirements. Thus, for each run the sample record length and the number of sample records were 
chosen as T -- 5 s and q -- 200, respectively. The resolution bandwidth was thereby Bc -- 0.2 Hz and 
the total acquisition time for a single run was about 17 rain (statistical errors will be discussed later). 

To avoid folding, the sampling frequency has to be at least twice the maximum expected 
frequency. As the probe signals were filtered by a low-pass filter of 78 Hz maximum frequencyt 
before entering the analyzer, the sampling frequency was chosen as F c -- 204.8 Hz. The choice of 
the sampling frequency and the sample record length imply a number of points of each single 
sample record N = FeT .= 1024. Thus, the elementary frequency increment is Af = FdN = 0.2 Hz 
(Af = Be). 

Statistical error in spectral quantifies mainly depends on the number of sample records used for 
statistical averaging. In the present studies this number was q -- 200. The error in power spectral 
density was 7% and that in the variance was <0.3%.  The statistical errors in cross-spectral 
quantities additionally depend on the actual coherence function values. The statistical errors (~) 
in the coherence function (:2), system gain factor (~ )  and system phase factor (~) are given in 
table 2 for some values of  the coherence function (for q - 200). 

?Earlier studies (Mercadier 1981) showed that spontaneous void fraction fluctuations are negligible under equivalent 
experimental conditions for frequencies > 10 Hz. The same observation was made a posteriori in the present 
investigation. 
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5. CALIBRATION OF THE CONDUCTIVITY PROBES 

The electrical conductivity of a two-phase mixture depends on the volume fraction of the gas 
phase. For a given flow pattern there is a relationship 

kL = f ( a )  [31 

between the ratio i¢,/kL and the mean void fraction a, /~, being the mean conductivity of the 
two-phase mixture and k L the conductivity of the liquid. Many theoretical and experimental studies 
have been undertaken to establish the relationship between the conductivity of a two-phase mixture 
and the volume fraction of one of the phases (of. Turner 1976). These results were obtained with 
a homogeneous distribution of the dispersed phase. For the case of transition (churn) or slug flow, 
the gas phase is not uniformly distributed, and the above results are not applicable. Thus, in order 
to find the explicit form of [3] a method of calibration has been used. 

To calibrate the conductivity probes it is necessary to measure the conductivity of the liquid and 
of the mixture and at the same time to measure the mean void fraction. It was verified 
experimentally that, within the range of parameters covered in the experiments, the conductivity 
of the mixture did not visibly vary along the test section. This implies that the mean void fraction 
is nearly constant along the test section. Moreover, as the liquid flow rate was small (Jr = 0.18 m/s), 
the pressure drop due to friction was small, and it was possible to employ a manometric method 
(Mercadier 1981)~f to measure the mean void fraction. A large number of runs were done to check 
whether an explicit form of [3] obtained with the aid of calibration is affected by water impurities, 
temperature and location of probe. The ratio/~,/kL does not depend on these factors, as can be 
seen in figure 6 where the points from different tests are marked. The result of a regression analysis 
is very well approximated by a second-order polynomial: 

where the coefficients 

a0 = 0.999, 

are approximated for practical use by 

a0 = 1.00, 

k-"c = a0 + ala + a2022, [4] 

a1=-1 .363  and as :0 .212 

a t = - 1 . 3 6  and as=0.21. [5] 

The correlation coefficient is r2= 1.00 and the standard deviations of the exact polynominal 
coefficients are, respectively, 

a(a0) =0.0006, o(al) =0.0088 and o(a2)=0.0188. 

Knowing the value of the ratio ic=/kL [4] yields the value of the mean void fraction. As the 
normalized standard error in (E~/kL) was < 3% for all runs, the corresponding normalized error 
in the mean void fraction was < 5%. 

6. STANDARD DEVIATION OF THE VOID FRACTION 

The evolution of the standard deviation of the void fraction can yield much interesting 
information on the development of two-phase flows. If [4] is assumed to hold for the instantaneous 
values of the void fraction, it is possible to calculate the variance of the void fraction from 
conductivity signals. The void fraction and the conductivity of the mixture may be decomposed 

tlf the hquid flow rare is zero the momentum balance equation of a two-phue mixture can be simplified to the form 

dP /dz = --gPL O -- ~), 

P being the pressure, g the acceleration of gravity and p. the density of the fiquid phase. Thus, measurement of the pressure 
drop can supply the value of the mean void fraction. 
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into sums of  two terms, i.e. 

and 

= ~ + ~' [61 

k, = £, + k'_, [7] 

where overbar and prime denote mean and fluctuation terms, respectively. Relation [3] can then 
be expressed in the following way: 

_ df I 0~<t/~< 1; [8] kL ~ = f ( ~ t ) + ~ ' ~ - d  ~-a+~' 

[4] and [5] lead to the following linear relationship: 

df 
d-~ = - 1.36 + 0.42 [. [9] 

It will be seen later that the standard deviation of  the void fraction, which is a measure of  the order 
of  magnitude of  ~t', varies (cf. figure 7) from 0.012 for low ~ to 0.08 for ~ -~ 0.38. In the unfavorable 
case where ct fluctuates between 0 . 3 8 -  0.08 ffi 0.30 and 0.38 + 0.08 = 0.46, [9] yields 

df 
-- 1.23 ~<~-~ ~ --1.17 

o r  

d f = 1 . 2 + 2 . 5 %  d f  ~-~ 
dS --T~ ___2.5*/,. 

Thus, it is possible to let q ffi 0 and to obtain from [3] and [8] the relationship 

7~ -~ ~' [10] 
CI ~ C[" 

From [10] it is possible to express the variance or standard deviation of  the void fraction through 
the variance of  the conductivity probe signal: 

1 
¢~ -- Tq ~ (k'-)L, [l l] 

n,i 

k'~ being the conductivity probe signal and summations of  n and i denoting time and statistical 
averagings, respectively. Thus, the standard deviation of  void fraction can be expressed in the 
following form: 

l kL ' / - ~  [121 
a~ = ~ = 1.36 - 0.423 

7. R ESULTS AND D I S C U S S I O N  

7.1. Preliminary observations 

The mean void fractions investigated in the experiments span the range 0.1 ~< ~ ~< 0.5. Some 
signals and power spectral density functions, one for each value of  the void fraction, are shown 
in figures 2-4. The figures were drawn by a plotter and the scales were chosen by the computer 
to be as large as possible. They are therefore not the same in the different figures. The discrete points 
(Af ffi 0.2 Hz, At ffi 4.88 ms), which are the results of  sampling, are joined by straight-line segments. 
Qualitatively, the observed flow pattern may be classified as follows: 

bubble flow for: ~ --0.10, 0.15, 0.20, 0.25 
transition flow (churn) for: ~ ffi 0.30, 0.35, 0.40, 0.45 
slug flow for: ~ = 0.47, 0.50. 
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Figure 4. Typical signals and power spectral density functions, probe 11 (signal coordinates in arbitrary 
units). 

The liquid flow rate being small, the visual observation can be accepted as a criterion for flow 
pattern identification. 

Bubble flow was observed for ~ ~< 0.25, no Taylor bubble appearing along the test section of 
1.8 m. This observation contradicts the prediction of a model proposed by Taitel et  al. (1980) that 
no bubble flow could exist in tubes < 5 cm dia (here the cross section is a 2 x 2 cm2). It is possible, 
however, that the test section in our experiments was too short to enable Taylor bubbles to develop. 
Some results of this work support such a possibility. On the other hand, our observations confirm 
those of Taitel et  al. (1980) that churn flow is an entrance phenomenon, i.e. the early stage of a 
stable slug flow which exists farther along the tube. The tests for bubble flow confirmed Mercadier's 
results (1981) in that the spontaneous disturbances of void fraction are limited to a range of a few 
Hz, and the void fraction waves are not amplified. However, they appear as slightly dispersive, at 
least at low frequencies, even for small void fractions as will be seen later (sections 7.4 and 7.5). 

Slugs, arising in the upper part of the test section, were observed only for 0~ = 0.47 and ~ = 0.50. 
For these void fraction values, the power spectral density functions show very sharp peaks for the 
frequencies f = 1.0 and 1.2 Hz respectively, as can be seen in figure 4 (it is necessary to recall here 
that the minimum recognizable frequency increment is 0.2 Hz). This is in excellent agreement with 
the results obtained by Jones & Zuber (1975). They found that the characteristic slug frequency 
(i.e. the frequency corresponding to a sharp maximum of the power spectral density function) is 
limited to the range 0.8 < f < 1.0 Hz for ~ = 0.48 and Jt = 0.15 m/s, which is very close to the result 
of the present work: f = 1.0 Hz for ~ = 0.47 and Jt = 0.18 m/s. 

Finally, as discussed in Bour6 & Matuszldewicz (1984)--see also figure 7 hereaftermthe signals 
delivered by probes 6 and 10 were probably subject to systematic bias. To avert the consequences 
of such bias, the results for wave velocities and system gain factors presented here (sections 7.4 
and 7.5, and figures 8, 9 and 11) are not given for the probe pairs 5-6, 6-7, 9-10 and 10-11. They 
involve instead the relevant averages between probes 5 and 7 and between probes 9 and 11. 
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7.2. Standard deviation 

In figure 5 an example of the spatial evolution of the signals taken at different longitudinal 
positions along the test section is presented. It can be easily seen that the amplitude of the 
fluctuations increases with the longitudinal position of the probe. The mean void fraction being 
constant along the test section, an investigation of the spectral distribution of the standard 
deviation of void fraction can yield some interesting information on bubble and churn flows 
(0.10 ~< a ~< 0.45). The standard deviation of void fraction deduced from the standard deviation of 
the ~ignal itself (of. [12]) is given in figure 7. There are no points corresponding to 0~ = 0.47 and 
a = 0.50 in figure 7. The values of the standard deviation of void fraction for ~ = 0.47 are on 
average 2.3 times greater than those for a = 0.45 and the values of the standard deviation of void 
for ~ = 0.50 are on average 2.8 times greater than those for 0~ = 0.45. Exact values of the standard 
deviation of void fraction for a = 0.47 and ~ = 0.50 are not significant because they can be affected 
by a large bias error due to the presence of a sharp maximum in the power spectral density function 
(figure 4). Two observations can be easily drawn from figure 7. 

Firstly, for a given ~, the standard deviation of void fraction increases with the probe number, 
i.e. with the longitudinal position of the probe. This may be due to an instability of void fraction 
waves, which at low values of a would be contradictory to the results presented below (section 7.4) 
for the system gain factor, as well as to Mercadier's (1981) results. This may also be due to 
new fluctuations arising between each pair of probes as already discussed at the end of section 3. 
The discussion will be continued in the following sections. 

Secondly, at a given location, the standard deviation of void fraction goes through a maximum 
as ~ increases, and the larger the distance from the inlet, the more pronounced the maximum. The 
value a, corresponding to the maximum decreases very slightly with z, from ~, -~ 0.38 at probe 4 
to a , -  0.36 at probe 11. It is possible that, around a,, a void fraction wave instability is 
superimposed on new fluctuations arising, which may ultimately lead to the bubble--slug transition 
in long pipes. 

7.3. Coherence function between successive probes 

One of the most striking results of the data processing is a drastic change in coherence function 
(~,2) values between the signals obtained for a ~< 0.45 and those obtained for a = 0.47 and 0~ = 0.50. 

For 0.10 ~< a ~< 0.45, the greatest mean value ~,2 (calculated with the seven pairs of probes) of 
y: varies irregularly between 0.49 and 0.59, the largest individual value being 0.68. The signals of 
successive probes are only weakly correlated, which corroborates the assumption made above 
(section 7.2) that new fluctuations arise between probes. Except in a few particular eases, in which 
the values of y2 for probes 4-5 and/or 5-6 are <0.4, ?2 does not vary significantly with z. 

On the contrary, for ~ = 0.47 and ~ = 0.50, the greatest mean values of ~ are respectively 0.91 
and 0.93, denoting very well correlated signals, at least at some particular frequencies (respectively, 
1 and 1.2 Hz). For these frequencies ~2 does not vary significantly with z (the lowest individual value 
being 0.90) which means that it does not seem to depend on the actual presence of slugs since these 
appear only in the upper part of the test section. For the other frequencies, ~ 2 may vary significantly 
with z. 

Clearly, an important transition occurs between a = 0.45 and 0~--0.47 and it corresponds 
visually to the appearance of slugs. 

7.4. System gain factor 

For 0.10 ~< ~ ~< 0.45, the geometric mean/7  (calculated with the seven pairs of probes) of the 
system gain factor varies very slightly with the void fraction and the frequency at least for low 
frequencies ( f  < 2 Hz). For ~ - 0.47 and a --- 0.50, .O varies relatively more with the frequency but 
the variations remain small. The values close to the maximum ~,,~ o f / 2  as a function of ~ are 
given in figure 10, together with the corresponding frequencies. As for ~ (section 7.3), there is 
drastic change in //,~, between ~ --- 0.45 ( / / ,~  < 1) and a -- 0.47 (/~'E > 1). As mentioned in 
section 7.3, an important transition occurs between a = 0.45 and ~ -- 0.47. 

For 0. l0 ~< a ~< 0.45 the void fraction waves are attenuated, which confirms Mercadier's (1981) 
results. At first glance it could be interpreted as a contradiction to measure a system gain factor 
< 1 (figure 10), and a standard deviation of void fraction increasing with the longitudinal position 

M F 13/2--E 
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Figure 5. Spatial evolution of the signal for ~ = 0.30. 

of  the probe (figure 7). However, it is worth recalling that on the one hand the standard deviation 
is a measure of  the mean amplitude of  the fluctuations recorded by one probe, while on the other 
hand the system gain factor is a measure of  the growth of  the coherent part of signals recorded 
by two probes (Bcndat & Piersol 1971, p. 338). Thus, the standard deviation of  void fraction 
increases with the longitudinal position of  the probe because of  new fluctuations arising between 
two successive probes while the system gain factor is < 1 because the void fraction waves are 
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damped. Again this corroborates the assumption made in section 7.2 on the origin of the standard 
deviation increase with z. 

7.5. Wave velocity 

Measurements of the system phase factor between each pair of  successive probes (distance d) 
enable the calculation of  void fraction wave velocities i.n the following way: 

2~tfd c = - $ - ,  

where ~ is an estimate of  the system phase factor. The results show that for a given value of ~, 
the wave velocity depends on the longitudinal position even for bubble flows, which differs from 
Mercadier's (1981) results, and on the frequency, particularly for 02 -- 0.47 and ~ -- 0.50, i.e. for 
slug flows. In the present study the propagation velocity calculated between probes 9 and 11 was, 
for ~ ~< 0.45, always higher than that calculated between probes 4 and 5 (s¢¢ figure 8). The 
difference goes through a maximum when = increases, varying from a few % at low 02 to > 50%. 
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Figure l 1. Influence of the frequency on the velocity of void fraction waves. 

The relative differences of  pressure and propagation velocity of  void fraction waves between probes 
4-5 and 9-11 for the frequency f = 1.2 Hz are given in table 3. 

Under the experimental conditions of  the present study the void fraction is practically constant 
along the test section. As PG (density of  gas phase) ~ P, the mass-balance equation of  the gas phase 
leads to 

Ap a Wo a~ 
V- =0 

(Wc being the velocity of  the gas phase), and it implies that the relative difference of  gas velocity 
is of  the same order of  magnitude as the relative difference of  pressure. Thus, it can be noted (cf. 
table 3) that the relative difference of  the propagation velocity of  void fraction waves is markedly 
greater than the relative difference of  the mean gas velocity. This provides experimental verification 
of  the assumption that apart from the average motion of  gas there is another cause o f  the 
propagation of  void fraction waves. 

Table 3 

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 
- A P / P  0.067 0.064 0.060 0.057 0.054 0.050 0.047 0.044 
A C / C  0.071 0.11 0.22 0.26 0.46 0.55 0.49 0.37 
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For void fractions ~ I> 0.35 and frequencies close to the characteristic slug frequency the spatial 
distribution of  the wave velocity is well-marked. It is very interesting to compare it with the spatial 
distribution of  the system gain factor (figure 9). In figure 9 (left-hand part) distributions are shown 
for a void fraction ~ -- 0.40 (distribution for ~ = 0.45 and to a lesser extent for ~ -- 0.35 are quite 
similar) and for the frequency f = 0.8 Hz, which is close to the characteristic slug frequency (cf. 
figure 4). Between probes 5 and 7, the propagation velocity of  void fraction waves attains a 
minimum and the system gain factor is very close to 1,This observation was made for the frequency 
f -- 0.8 Hz. In figure 8 are also shown spatial distributions of  wave velocities for another frequency, 
f = 1.2 Hz: for ~ ~< 0.45, the spatial distribution of  the wave velocity does not show any minimum, 
and the system gain factor always remains < 1. 

Slugs were not observed in the test section for ~ ~< 0.45. This could be due to the damping which 
prevails along the test section (H < 1 for successive pairs of  probes) or to the fact that the test 
section is not sufficiently long for the development of slugs. For void fractions ~ = 0.47 and 

- 0.50, slugs effectively arise in the upper part of the test section. 
In figure 9 (right-hand part) the spatial distributions of  the wave velocity and of the system gain 

factor are shown for ~ = 0.50 and for the frequency f = 1.2 Hz corresponding to the sharp peak 
of the power spectral density function (see figure 4). The distributions for ~ = 0.47 are quite similar 
but the characteristic slug frequency is then f = 1.0 Hz. Under these conditions the spatial 
distribution of the wave velocity clearly shows a minimum. The system gain factor is markedly > 1 
for all points. The appearance of slugs is then accompanied by two characteristics of  instability, 
i.e. system gain factor > 1 and negative spatial gradient of wave velocity. The instability of  the void 
fraction waves also appears for a certain frequency. 

For bubble and churn flows, i.e. ~ ~< 0.45, the void fraction waves are only slightly dispersive. 
On the contrary, for slug flow, i.e. for ~ = 0.47 and ~ = 0.50, the wave velocity depends very much 
on the frequency. In figure 11 the wave velocity range along the test section is shown, for each 
value of ~, as a function of  the frequency. For  slug flow the wave velocity goes through a maximum 
for f - = 1.2 Hz, i.e. the frequency corresponding to the sharp peak of  the power spectral density 
function for ~ = 0.50. 

7.6. Wavelength 

The wavelength being an invariant of  reference it would appear as more rational to express all 
experimental results as functions of  the wavelength rather than of the frequency. In practice it is 
an impossible or at least a very difficult task. For the sake of  completeness the orders of  magnitude 
of the wavelengths can be calculated using the formula ~ = C/ f .  It should be noted, however, that 
the wavelengths obtained in this way are subject to large errors. The relative error on frequency 
(frequencies of interest being of the order of  1 Hz) and the relative error on wave velocity (in the 
most unfavorable case) being 20%, the relative error on wavelength can attain as much as 40%. 
Then only the order of  magnitude is significant for the calculated values. The wavelength of  the 
void fraction waves increases from about 0.3 m for bubble flow to about 0.9 m for slug flow. The 
wavelength for slug flow is obviously greater than typical Taylor bubble length, because it includes 
both the length of  a Taylor bubble and the length of the plug separating two successive Taylor 
bubbles. 

8. CONCLUSIONS 

The propagation of  the void fluctuation disturbances occurring spontaneously in an upward 
vertical, nitrogen-water flow has been studied at atmospheric pressure, through statistical analysis 
of the signals of  eight conductivity probes and for a single small liquid flow rate (JL " 0.18 m/s), 
but using a void fraction range including the bubble-slug transition (0.1 ~< ~ ~< 0.5). 

The results for bubble flow are in agreement with the results obtained in the past. The spectrum 
of natural disturbances is narrow, i.e. its upper limit does not exceed a few Hz. t  The disturbances 

tThis is well below the limit defined by the dimensions of the probe (2 x 2 fro). It is not possible to detect waves whose 
wavelength is of the order of ~0.02 m, i.e, waves, for which f > Cm/0.02. Thus, the waves which are to be recorded 
must have frequencies f < 15.4 Hz for bubble flow and f < 35 Hz for slug flow. These conditions are well-fulfilled as 
can be seen in the plots of the power spectral density functions (figures 2-4). 
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propagate at a velocity different from the velocities of the gas and of the liquid. This velocity is 
nearly independent of the frequency. The spatial variation of the wave velocity is significantly larger 
than the increase of the mean gas velocity. 

The analysis of the standard deviation of void fraction, system gain factor and coherence 
function, suggests that sources of void fraction fluctuations are distributed all along the tube. These 
sources are likely to be interactions between bubbles, between bubbles and the walls, and 
turbulence. Fluctuations arise at any cross section and are superimposed upon the fluctuations 
arriving there by propagation. 

Void fraction waves are slightly dispersive, the dependency of C on the longitudinal position and 
on the frequency increasing as ~ increases, from practically zero to a significant dependency. 

The results corresponding to churn and slug flows are compatible with the hypothesis relating 
the appearance of slugs to the instability of void fraction waves. 

For 0.35 ~ ~ ~ 0.45 a smooth transition occurs. The standard deviation of the void fraction 
begins to decrease. The disturbances are damped or amplified as they propagate (the system gain 
factor H is not known with sufficient accuracy to draw conclusions) but, in most cases, very slightly. 
Around f -- 0.8 Hz the wave velocity goes through a well-marked minimum (see figure 9). It is 
probable that the test section was too short for slugs to develop. 

For 0~ t> 0.45, a sharper transition occurs. The coherence function of successive probe signals 
increases abruptly for some "sensitive" frequencies (from ~2 _ 0.55 to 72 > 0.90 for f = 1.0 Hz and 

= 0.47 or for f = 1.2 Hz and ~ = 0.50) which are close to the above-mentioned frequency 
f = 0.8 Hz. Simultaneously, for the sensitive frequencies the power spectral density function has 
a sharp peak, the system gain factor becomes > 1, the wave velocity goes through a maximum 
(figure 11) and the spatial distribution of the wave velocity has a well-marked minimum (figure 
9). The corresponding void fraction waves are definitely unstable. Slugs are actually observed in 
the upper part of the test section. One can also tentatively conclude that the frequency relevant 
to the instability of the void fraction waves and the flow pattern transition is an increasing function 
of the mean void fraction ( f  -- 1.0 Hz for ~ = 0.47 and f = 1.2 Hz for ~ = 0.50). However, it is 
recalled that the minimum recognizable frequency increment is Af = 0.2 Hz. 

Finally, the actual appearance of slugs results from the development of a weak instability, and 
entails a transition length (the larger the average void fraction, the stronger the instability) which 
cannot be predicted with the present knowledge in this field. The actual bubble-slug transition is 
closely relate0 to the occurrence of sharp peaks in the power spectral density function and may 
be characterized by a sudden increase in the coherence function of natural fluctuations at two 
successive probes for some "sensitive" frequencies. 

Obviously, the results of the present study raise many questions which remain to be answered, 
but the existence of a relationship between the bubble-slug transition and the void fraction wave 
instability has been substantiated. 
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A P P E N D I X  

Basic Definitions o f  the Statistical Functions used (from Bendat & Pierso11971) 

The conductivity signal x(t)  has been digitized every At = T/N, where T is the duration of a 
single sample record and N is the number of points recorded for one sample (here T = 5 s, 
N = 1024). Then, the discrete approximation of the finite Fourier transform has been used in the 
following form: 

N - I  

x( fx )  = At ~ x, exp(-2~f fn  At), [A.1] 
n = O  

where 

and 

j 

x .=  x (n .A t )  [A.2] 

K K 
fx=N.A----~t=-~, K=O,  1 . . . .  , N - 1 .  [A.3] 

The estimate of the power spectral density function for the ith sample has been expressed as 
follows: 

2 [A.4] ~ x j ( f x ) = ~ . A t  [Xi(fx)[2, i = l , 2 , . . . , q .  

To obtain the final estimate of the power spectral density function, ¢~x(fr), for one run, statistical 
averaging has been performed on q = 200 samples, i.e. 

(~x(fx) = q=51~ ¢~x(fx). [A.5] 
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The estimate of the standard deviation of the conductivity signal 

x 2 [A.6] 
!P x - N .  At ,-o , ,,i 

has been calculated in the following way: 

~ 2 _  1 N - i  
I t l t  x _ lV.At dx(I,<). [A.rl 

K ~ 0  

Formula [A.7] is an approximation of the exact relation 

fo" ~p2 = G , ( f )  d f  [A.81 

between the power spectral density function, G , ( f ) ,  and the standard deviation, ~'~ (Bendat & 
Piersol 1971, p. 86). 

Two signals x,(t) and y~(t), from different probes, have to be processed in order to obtain 
estimates of the coherence function, and the system gain and phase factors. These functions are 
expressed in terms of the cross-spectral density function. The estimate of the cross-spectral density 
function for the ith sample has been calculated as follows: 

2 
dxy.,(fx) -- T A t  X*(fr)"  Y,(fx), [A.9] 

where X*( f r )  is the complex conjugate of Xi( fr )  and Yi(fr)  represents a discrete approximation 
of the finite Fourier transform of the signal y~(t). The final estimate of the cross-spectral density 
function has been expressed as a statistical average over q = 200 samples, i.e. 

The coherence function, the system gain and phase factors, have been estimated as follows: 

I G~y(fx) 12 
72x = dx(fx)" dy(fK)' [A.II] 

IB(fx)l = IG,(fx)l  [A.121 
Ox(fK) 

and 

ta ~(SK)= n Lc--Tyi$. J' [A.13] 

where Gy(fK) represents the estimate of the power spectral density function of the signal y( t ) .  The 
quantities Q(fK) and C( f r )  are defined by the following equation: 

d , ( A )  = C(A)  - J0  (A)- [,4,.14] 

The coherence function defined by [A.11] is bounded to the range [0, 1], and is zero for completely 
uncorrelated signals and unity for completely correlated signals. The system gain factor [A.12] is 
< 1 if the coherent part of the signals is attenuated and is > 1 if the coherent part of the signals 
is amplified. 


